Introducing the new hematology analyzer, and discussion on the utility of reticulocyte assessment in today's practice

Dennis B. DeNicola, DVM, PhD, DACVP

Discussion topics

New technology for hematology analyzer \bigcirc

Discussion topics

- New technology for hematology analyzer \bigcirc
- Measurement of reticulocyte and clinical \bigcirc application

Discussion topics

- New technology for hematology analyzer \bigcirc
- Measurement of reticulocyte and clinical \bigcirc application
- Value of reticulocytes in non-anemic \bigcirc animals

LaserCyte Dx Technology – Flow Cytometry (FCM) ProCyte Dx Technologies – Impedance, FCM, Optical Fluorescence

IDEXX LaserCyte Dx Hematology Analyzer

Avalanche Photodiode (fluorescent light) Dichroic Mirror Photodiode (side-scattered light)

Photodiode (forward-scattered light)

IDEXX ProCyte Dx Hematology Analyzer

LaserCyte Dx Technology – Flow Cytometry (FCM) ProCyte One Technology – Flow Cytometry (FCM)

IDEXX LaserCyte Dx Hematology Analyzer

IDEXX ProCyte One Hematology Analyzer

Technology has changed over the years...cameras

1990: Basic analog film camera

2002: Advanced analog film camera 2020: Advanced digital film camera

The box may look similar, but the operation and features are *dramatically* different.

Technology has changed over the years...flow cytometers

Just as cameras have had a vast technological evolution, so has automated hematology.

2020: ProCyte One™

ProCyte One vs LaserCyte Dx – Same Technology ... Huge Difference

- Major Advantage over impedance
 - Flow Cytometry

Compared to ProCyte One

- Struggles at temperatures > 27° C (80.6° F) •
- Precision performance just satisfies ASVCP and CLSI guideline
- Restricted light scatter angle data collection results superior to impedance but less than optimal differentiation and counting
- 'Old' laser technology
 - More difficult to assure stability and performance

- Major Advantage over impedance
 - Flow Cytometry

Major Advantages over LaserCyte Dx

- Much wider operating temperatures • Up to 35° C (95° F)
- Improved precision targeted to perform like ProCyte Dx
- Improved clustering of digitized events equals improved differentiation and counting – targeting PDx performance
- Improved laser more consistency in results Newer lasers more powerful and stable

ProCyte One key design elements Objective: Create the ideal, highly differentiated solution for general practice

Economical	Menu	Pe
 Simple, elegant design 	 5-part differentials and 	0
 Completely intuitive 	dot plots	0
 Reliable 	 Reticulocytes 	0
Eived CBC price	 Smart flagging 	
	 Platelet enhancements 	0
 Pay per Run 	 Interpretive aids 	0

rformance

- Precise and accurate
- On-board quality control
- Time to results <5 min
- Operating temp up to 35°C
- Small footprint

ProCyte One key design elements Objective: Create the ideal, highly differentiated solution for general practice

Economical	Menu		
o Simple, elegant design	 5-part differentials and 	0	
 Completely intuitive 	dot plots	0	
	 Reticulocytes 		
	 Smart flagging 		
• Fixed CBC price	 Platelet enhancements 	0	
 Pay per Run 			
	 Interpretive aids 	0	

rformance

- Precise and accurate
- On-board quality control
- Time to results <5 min
- Operating temp up to 35°C
- Small footprint

ProCyte One key design elements Objective: Create the ideal, highly differentiated solution for general practice

Economical	Menu		
o Simple, elegant design	 5-part differentials and 	0	
 Completely intuitive 	dot plots	0	
	 Reticulocytes 		
O REIIADIE	 Smart flagging 	0	
 Fixed CBC price 		0	
 Pay per Run 	• Platelet enhancements		
	 Interpretive aids 	0	

rformance

Precise and accurate

On-board quality control

Time to results <5 min

Operating temp up to 35°C

Small footprint

Now customers have the ability to choose which hematology instrument from the ProCyte platform fits their needs

Intuitive, load-and-go workflow, requires little maintenance, frees-up time to focus on patients

- + 5 part diff / retics + Advanced HD laser + 5 minute run time
- + Automated SmartQC
- + Unprecedented Ease of Use
- + Fixed CBC Price (PPR/AR)

+ nRBC's + RETIC-HGB

- + Band neutrophils
- + 2 minute run time

For customers who heavily weigh the cost per test, running just 2 CBCs per day, ProCyte Dx will be more attractive on a cost per test basis than ProCyte One

Provides the most comprehensive CBC with advanced parameters in 2 minutes

- + Fluids
- + 17 Species
- + Variable cost

Now customers have the ability to choose which hematology instrument from the ProCyte platform fits their needs

- + 5 minute run time

For customers who heavily weigh the cost per test, running just 2 CBCs per day, ProCyte Dx will be more attractive on a cost per test basis than ProCyte One

- + Variable cost

'Do the data match the clinical picture?'

External quality assurance program

Differences between LaserCyte Dx, ProCyte One and ProCyte Dx

LaserCyte Dx

ProCyte One

18 © 2017 IDEXX Laboratories, Inc. All rights reserved.

ProCyte Dx

Differences between LaserCyte Dx, ProCyte One and ProCyte Dx

LaserCyte Dx

ProCyte One

ProCyte Dx

Granularity (Side Scatter)

What magic is the algorithm team using?

20 © 2017 IDEXX Laboratories, Inc. All rights reserved.

What magic is the algorithm team using?

Complexity

What magic is the algorithm team using?

SS_peak

ProCyte One Cell Cluster Analysis

23 © 2017 IDEXX Laboratories, Inc. All rights reserved.

Magic behind the leukocyte algorithm

24 © 2017 IDEXX Laboratories, Inc. All rights reserved.

ProCyte One Performance

- Specifications defined before construction of ProCyte One began
 - Followed recommendation by:
 - American Society for Veterinary Clinical Pathology
 - European Society of Veterinary Clinical Pathology
 - Precision (%CV)
 - Correlation (r)
 - Accuracy (compared to PDx)
 - Total allowable error (TE)

Internal data analysis – Canine only

- Erythrocytes and Platelets \bigcirc
 - 18 analyzers
 - 832 individual sample runs (151 Purdue runs) •
 - Calibration Westbrook R&D
 - Fresh data collected in-clinic
 - Labs primarily from IDEXX Oregon laboratory
 - Precision mean of %CV of 10-canine runs from 12 analyzers / 7 analyzers had two precision runs
- Leukocytes \bigcirc
 - 795 individual sample runs
 - Precision mean of %CV of 10-canine runs from 12 analyzers / 7 analyzers had two precision runs

Internal data analysis – Canine only

Parameter	Precision	Correlation (r)	Accuracy	Total Allowabl e Error	Parameter	Precision	Correlation (r)	Accuracy	Total Allowable Error
RBC	1.1% (<3%)	0.98 (>0.95)	-0.4% ±3%	2.6% (<10%)	PLT	3.2% (<8%)	0.92 (>0.90)	-2.3% (±10%)	8.7% (<20%)
HGB	1.3% (<3%)	0.99 (>0.90)	-0.2% (±2%)	2.8% (<10%)	MPV	1.6% (N/A)	0.64 (N/A)	-0.5% (N/A)	3.7% (N/A)
HCT	1.2% (<3%)	0.96 (>0.90)	-0.2% (±4%)	2.6% (<10%)	PDW	4.7% (N/A)	0.89 (N/A)	1.2% (N/A)	10.6% (N/A)
MCV	0.5% (<1.1%)	0.91 (>0.90)	0.3% (N/A)	1.3% (<7%)	PCT	3.5% (N/A)	0.87 (N/A)	-1.7% (N/A)	8.7% (N/A)
MCH	1.7% (N/A)	0.99 (N/A)	0.0% (N/A)	3.4% (N/A)					
MCHC	1.8% (N/A)	0.99 (N/A)	0.0% (N/A)	3.6% (N/A)					
RDW	0.5%	0.59	-3.1%	4.1%					
RETIC	5% (<15%)	0.91 (>0.90)	-7 K/μL (±10 K/μL)	17% (<20%)	() – ASVCP guidelines				

Correlations – RBC parameters

Correlations – PLT parameters

Internal data analysis – Canine only

Parameter	Precision	Correlation (r)	Accuracy	Total Allowabl e Error	
WBC	3.4% (<6%)	0.97 (>0.9)	3.2% ±5%	9.96% (<15%)	
NEU	3.8% (N/A)	0.98 (>0.90)	14% (±2%)	9.3% (<15%)	
LYM	9% (N/A)	0.70 (>0.60)	-0.38% (N/A)	18.4% (<15%)	
MONO	10.9% (N/A)	0.87 (>0.60)	15% (N/A)	21.9% (<60%)	
EOS	7.2% (N/A)	0.97 (>0.7)	- (N/A)	14.4% (<50%)	
BASO	- (N/A)	- (>0.45)	- (N/A)	- (N/A)	
() – ASVCP guidelines					

Reflection of PDx automated differential

WBC/LYM Outlier High (Oregon)

Value of Reticulocytes in the Anemic Patient

The value of reticulocyte counts with the anemic patient

- First question to ask with an anemic patient: \bigcirc
 - 'Is the anemia regenerative or nonregenerative?'

Nonregenerative

Anemia of inflammatory disease Bone marrow failure Renal failure Chronic iron deficiency Endocrinopathies

There are various ways to make this distinction; however, the reticulocyte count is the most objective measure of bone marrow responsiveness to a need for increased RBC

What is the prevalence of anemia

- Two different studies \bigcirc
 - Random data collection from global fleet of ProCyte Dx Analyzers in 2017 (one year)
 - 1,000,000 Canine CBCs
 - 1,000,000 Feline CBCs

What is the prevalence of anemia

Two different studies \bigcirc

- Random data collection from global fleet of ProCyte Dx Analyzers in 2017 (one year)
 - 1,000,000 Canine CBCs
 - 1,000,000 Feline CBCs
- Taiwan ProCyte Dx Analyzers 2018-12-1 to 2020-12-31
 - 149,076 Canine CBCs
 - 116,951 Feline CBCs

Breed	
Other	96
Poodle Standard	12
Maltese	8,
Dachshund	5,
Shiba Inu	4,
Chihuahua	3,
Pomeranian	2,
French Bulldog	2,
Yorkshire Terrier	2,
Golden Retriever	1,
Shih Tzu	1,

Ν	%
6,555	64.8
2,329	8.3
3,822	5.9
5,319	3.6
4,014	2.7
3,303	2.2
2,558	1.7
2,122	1.4
2,025	1.4
1,393	0.9
1,308	0.9

What is the prevalence of anemia

100.0% 18.7% 90.0% 25.5% 80.0% 70.0% 60.0% 50.0% 81.3% 40.0% 74.5% 30.0% 20.0% 10.0% 0.0% **Global Canine Global Feline**

Distribution - Anemia and No Anemia

No Anemia Anemia

What is the prevalence of anemia

Distribution - Anemia and No Anemia

What is the prevalence of regenerative and nonregenerative anemia

Distribution – Regenerative and Nonregenerative Anemia

What is the prevalence of regenerative and nonregenerative anemia

40 © 2017 IDEXX Laboratories, Inc. All rights reserved.

• How is a bone marrow response determined?

• How is a bone marrow response determined?

• Direct examination of the bone marrow

• How is a bone marrow response determined?

- Direct examination of the bone marrow
- Peripheral blood film review

Polychromasia Anisocytosis

• How is a bone marrow response determined?

- Direct examination of the bone marrow
- Peripheral blood film review

Polychromasia Anisocytosis

Diff Quik stain

• How is a bone marrow response determined?

- Direct examination of the bone marrow
- Peripheral blood film review
- Complete blood count data:
 - RBC indices—morphologic classification
 - Reticulocyte count—objective measure of bone
 marrow response

Polychromasia Anisocytosis

Diff Quik stain

Erythropoiesis

Compared to mature RBC, Reticulocytes:

- 1. Larger (increased MCV)
- 2. Less HGB (decreased MCHC
- 3. Contribute to anisocytosis

Red blood cell indices

- Numerical values describing blood film morphologic changes:
 - MCV—mean corpuscular volume:
 - Immature RBCs are larger than mature RBCs.
 - Relatively rare conditions with increased MCV not associated with regeneration:
 - Miniature and toy poodles, greyhounds, FeLV infections
 - MCHC—mean corpuscular hemoglobin concentration:
 - Immature RBCs have less hemoglobin than mature RBCs.
 - Advanced stages of chronic blood loss—iron deficiency.
 - RDW—red cell distribution width:
 - Objective measure of variability of RBC size
 - Not specific for mixture of normal and large RBCs:
 - Normal and large cells
 - Normal and small cells
 - Normal, large, and small cells

of **RBCs**

Size of RBCs

Prevalence of Increased MCV with Regenerative Anemia

Regenerative Anemia with Increased MCV

IDEXX

Prevalence of Increased MCV with Regenerative Anemia

Regenerative Anemia with Increased MCV

Prevalence of Decreased MCHC with Regenerative Anemia

Regenerative Anemia with Decreased MCHC

IDEXX

Prevalence of Decreased MCHC with Regenerative Anemia

Regenerative Anemia with Decreased MCHC

Prevalence of Increased RDW with Regenerative Anemia

Regenerative Anemia with Increased RDW

IDEXX

Prevalence of Increased RDW with Regenerative Anemia

Prevalence of Inc MCV / Dec MCHC with Regenerative Anemia

Regenerative Anemia with Inc MCV / Dec MCHC

IDEXX

Prevalence of Inc MCV / Dec MCHC with Regenerative Anemia

Regenerative Anemia with Inc MCV / Dec MCHC

Prevalence of Inc MCV / Dec MCHC / Inc RDW with Regenerative Anemia

Inc MCV / Dec MCHC / Inc RDW

Prevalence of Inc MCV / Dec MCHC / Inc RDW with Regenerative Anemia

Inc MCV / Dec MCHC / Inc RDW

Conclusions regarding anemia characterization

Absolute reticulocyte counts are ESSENTIAL for correct characterization of the anemia \bigcirc

Conclusions regarding anemia characterization

- o Absolute reticulocyte counts are ESSENTIAL for correct characterization of the anemia
- Standard RBC Indices (MCV, MCHC, RDW) have extreme low sensitivity and specificity

tion of the anemia ivity and specificity

Conclusions regarding anemia characterization

- o Absolute reticulocyte counts are ESSENTIAL for correct characterization of the anemia
- Standard RBC Indices (MCV, MCHC, RDW) have extreme low sensitivity and specificity
- What to do if your analyzer does not provide a reticulocyte count
 - Blood film is essential
 - Manual reticulocyte count may be needed

tion of the anemia ivity and specificity

Dot plot review Good separation of cell types – trusted data

Dot plot review Good separation of cell types – trusted data Marked increase in RETIC cluster

Dot plot review

Good separation of cell types – trusted data Marked increase in RETIC cluster

Data review

Marked anemia with marked regeneration (RETIC)

Test	Results	Reference I	nterval	LOW	NORMAL	HIGH
ProCyte One (Ju	5 PM)					
RBC	2.45 M/µL	5.65 - 8.87	LOW			
HCT	18.9 %	37.3 - 61.7	LOW			
HGB	3.4 g/dL	13 .1 - 20 .5	LOW			
MCV	77.0 fL	61.6 - 73.5	HIGH			
MCH	14.1 pg	21.2 - 25.9	LOW			
MCHC	18.2 g/dL	32.0 - 37.9	LOW			
RDW	11.3 %	13.6 - 21.7	LOW			8
%RETIC	17.0 %					
RETIC	416.6 K/µL	10.0 - 110.0	HIGH			

Dot plot review

Good separation of cell types – trusted data Marked increase in RETIC cluster

Data review

Marked anemia with marked regeneration (RETIC) Classic ('textbook') RBC indices for 'regenerative anemia' Macrocytic – increased MCV Hypochromic – decreased MCHC

Test	Results	Reference Inte	erval LOW	NORMAL	HIGH			
ProCyte One (July 7, 2021 3:05 PM)								
RBC	2.45 M/µL	5.65 - 8.87 L	OW					
HCT	18.9 %	37.3 - 61.7 L	OW					
HGB	3.4 g/dL	13.1 - 20.5 L	OW					
MCV	77.0 fL	61.6 - 73.5 H	IGH E					
MCH	14.1 pg	21.2 - 25.9 L	OW					
MCHC	18.2 g/dL	32.0 - 37.9 L	OW		5			
RDW	11.3 %	13.6 - 21.7 L	OW	8 0 0	5			
%RETIC	17.0 %							
RETIC	416.6 K/μL	10.0 - 110.0 H	IGH State					

Complexity

Dot plot review Good separation of cell types – trusted data

Dot plot review

Good separation of cell types – trusted data Moderate increase in RETIC cluster

Dot plot review

Good separation of cell types - trusted data Moderate increase in RETIC cluster

Data review

Moderate anemia with Moderate regeneration (RETIC)

	Test	Results	Reference I	nterval	LOW	NORMAL	HIGH
ProCyte One (August 3, 2021 12:51 PM)							
	RBC	3.07 M/µL	5.65 - 8.87	LOW			
	НСТ	22.1 %	37.3 - 61.7	LOW	22 - 2 ⁰		
	HGB	6.3 g/dL	13 .1 - 20 .5	LOW			
	MCV	72.1 fL	61.6 - 73.5				
	MCH	20.4 pg	21.2 - 25.9	LOW	20		
	MCHC	28.3 g/dL	32.0 - 37.9	LOW	18 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -		
	RDW	11.6 %	13.6 - 21.7	LOW	23 		
	%RETIC	7.3 %					
•	RETIC	223.0 K/µL	10.0 - 110.0	HIGH			

Dot plot review

Good separation of cell types – trusted data Moderate increase in RETIC cluster

Data review

Moderate anemia with Moderate regeneration (RETIC) Classic ('textbook') RBC indices for 'regenerative anemia' not evident Normocytic – normal MCV Hypochromic – decreased MCHC

Test	Results	Reference Inter	val LOW	NORMAL	HIGH				
ProCyte One (August 3, 2021 12:51 PM)									
RBC	3.07 M/µL	5.65 - 8.87 LOV	W						
НСТ	22.1 %	37.3 - 61.7 LOV	W iii iii						
HGB	6.3 g/dL	13.1 - 20.5 LOV	W						
MCV	72.1 fL	61.6 - 73.5							
MCH	20.4 pg	21.2 - 25.9 LO	W						
MCHC	28.3 g/dL	32.0 - 37.9 LO							
RDW	11.6 %	13.6 - 21.7 LOV	W and the second s						
%RETIC	7.3 %								
RETIC	223.0 K/µL	10.0 - 110.0 HIG	BH F						

Easily identified polychromatophils 1-2 / 100x Oil Immersion FOV

Additional confirmation of reticulocytosis

Chet – 12-year-old, Mn, Domestic shorthair

Dot plot review Good separation of cell types – trusted data

Chet – 12-year-old, Mn, Domestic shorthair

Dot plot review

Good separation of cell types – trusted data Moderate to marked increase in RETIC cluster

Chet – 12-year-old, Mn, Domestic shorthair

RBC RETICS PLT RBC Frags WBC

Dot plot review

Good separation of cell types – trusted data Moderate to marked increase in RETIC cluster

Data review

Moderate anemia with Moderate regeneration (RETIC)

Test	Results	Reference I	nterval	LOW	NORMAL	HIGH	
ProCyte One (July 8, 2021 4:52 PM)							
RBC	* 3.29 M/µL	6.54 - 12.20	LOW				
HCT	* 13.4 %	30.3 - 52.3	LOW				
HGB	1.7 g/dL	9.8 - 16.2	LOW				
MCV	* 40.7 fL	35.9 - 53.1		Ť.			
MCH	* 5.1 pg	11.8 - 17.3	LOW				
MCHC	* 12.4 g/dL	28.1 - 35.8	LOW				
RDW	* 21.6 %	15.0 - 27.0					
%RETIC	* 5.5 %						
RETIC	* 179.3 K/µL	3.0 - 50.0	HIGH			1 1 1	

Dot plot review

Good separation of cell types - trusted data Moderate to marked increase in RETIC cluster

Data review

Moderate anemia with Moderate regeneration (RETIC) Classic ('textbook') RBC indices for 'regenerative anemia' not evident Normocytic – normal MCV Hypochromic – decreased MCHC

	Test	Results	Reference I	nterval	LOW	NORMAL	HIGH	
	ProCyte One (ProCyte One (July 8, 2021 4:52 PM)						
ſ	RBC	* 3.29 M/µL	6.54 - 12.20	LOW				
	HCT	* 13.4 %	30.3 - 52.3	LOW				
	HGB	1.7 g/dL	9.8 - 16.2	LOW	0			
	MCV	* 40.7 fL	35.9 - 53.1					
	MCH	* 5.1 pg	11.8 - 17.3	LOW				
	MCHC	* 12.4 g/dL	28 .1 - 35 .8	LOW				
	RDW	* 21.6 %	15.0 - 27.0					
	%RETIC	* 5.5 %						
	RETIC	* 179.3 K/µL	3.0 - 50.0	HIGH				

NOTE – Many results are qualified (*)

NORMAL HIGH

5	

1	12	
	24 Y	

Abnormal RBC cluster shape

RBC RETICS PLT RBC Frags WBC

Complexity

Abnormal RBC cluster shape

Many small (and pathologic) RBCs

RBC RETICS PLT RBC Frags WBC

Complexity

Value of Reticulocytes in the Non-Anemic Patient

 \bullet

Dot plot review Good separation of cell types – trusted data

Dot plot review

Good separation of cell types – trusted data Mild to moderate increase in RETIC cluster

Dot plot review

Good separation of cell types - trusted data Mild to moderate increase in RETIC cluster

Data review

Reticulocytosis without anemia

	Test	Results	Reference Interval	LOW	NORMAL	HIGH
	ProCyte On	e (July 9, 2021 1	0:28 AM)			
Г	RBC	7.11 M/µL	5.65 - 8.87	S		
	HCT	48.0 %	37.3 - 61.7	2		
	HGB	13.6 g/dL	13.1 - 20.5	2		
	MCV	67.6 fL	61.6 - 73.5			
	MCH	19.1 pg	21.2 - 25.9 LOW			
	MCHC	28.2 g/dL	32.0 - 37.9 LOW	ala sa ang		
	RDW	19.6 %	13.6 - 21.7	25		
	%RETIC	2.2 %				
	RETIC	155.4 K/µL	10.0 - 110.0 HIGH			2 4

"Slightly" Outside RI Limits – How much of a change is significant

- How often will this occur?
- How do I define "slightly"?
 - ± 2 SD = 95.44% of clinically normal animals
 - ± 3 SD = 99.64% of clinically normal animals
 - Add and subtract 1 SD to and from the upper and lower RI limits
- How do I determine 1 SD?

1 SD = (Upper RI limit – Lower RI limit) <u>4</u>

Example: RI for RETIC is 10 - 110 U/L (canine) (110 - 10) = 100 (100 ÷ 4) = 25 1 SD = 25 U/L

88 © 2017 IDEXX Laboratories, Inc. All rights reserved.

Easily identified polychromatophils 1-2 / 100x Oil Immersion FOV

Additional confirmation of reticulocytosis

Suspect spherocytosis but no obvious significant morphologic abnormalities

Easily identified polychromatophils 1-2 / 100x Oil Immersion FOV

Additional confirmation of reticulocytosis

Suspect spherocytosis but no obvious significant morphologic abnormalities

90 © 2017 IDEXX Laboratories, Inc. All rights reserved.

Easily identified polychromatophils 1-2 / 100x Oil Immersion FOV

Additional confirmation of reticulocytosis

Suspect spherocytosis but no obvious significant morphologic abnormalities

RBC RETICS PLT RBC Frags WBC

Dot plot review Good separation of cell types – trusted data

Dot plot review

Good separation of cell types – trusted data Mild to moderate increase in RETIC cluster

RBC RETICS PLT RBC Frags WBC

Dot plot review

Good separation of cell types - trusted data Mild to moderate increase in RETIC cluster

Data review

Reticulocytosis without anemia

	Test	Results	Reference In	terval	LOW	NORMAL	HIGH
	ProCyte On	e (July 9, 2021 1	0:28 AM)				
[RBC	7.11 M/µL	5.65 - 8.87		8)		
	HCT	48.0 %	37.3 - 61.7		20		
	HGB	13.6 g/dL	13.1 - 20.5		20		
	MCV	67.6 fL	61.6 - 73.5		20		
	MCH	19.1 pg	21.2 - 25.9	LOW	8 <mark>9 8</mark> 8		
	MCHC	28.2 g/dL	32.0 - 37.9	LOW	88 - W <mark>a</mark> 17		
	RDW	19.6 %	13.6 - 21.7		20		
	%RETIC	2.2 %			-		
	RETIC	155.4 K/µL	10.0 - 110.0	HIGH	53) 	F I	1

Easily identified polychromatophils

Additional confirmation of reticulocytosis

Spherocytosis supporting immunemediated extravascular destruction

Easily identified polychromatophils

Additional confirmation of reticulocytosis

Spherocytosis supporting immunemediated extravascular destruction

Easily identified polychromatophils

Additional confirmation of reticulocytosis

Spherocytosis supporting immunemediated extravascular destruction

97 © 2017 IDEXX Laboratories, Inc. All rights reserved.

Easily identified polychromatophils

Additional confirmation of reticulocytosis

Agglutination suggested in body of blood film

- Anemia when
 - - respond.

Rate of blood loss or hemolytic disease

Overwhelms the bone marrow capacity to

- No anemia when ...

Is mild or early enough and does not overwhelm the bone marrow capacity to respond.

Rate of blood loss or hemolytic disease

No anemia

Prevalence of Reticulocytosis without Anemia

Reticulocytosis without Anemia

Prevalence of Reticulocytosis without Anemia

Reticulocytosis without Anemia

Increasing prevalence of iron deficiency: Study

Pattullo KM, Kidney BA, Taylor SM, Jackson ML. Reticulocytosis in nonanemic dogs: increasing prevalence and potential etiologies. Vet Clin Pathol. 2015;44(1):26–36.

- Increased rate of microcytosis noted in the nonanemic dogs with reticulocytosis Ο
- Iron profiles more consistent with iron deficiency Ο
 - Lower total Fe and % transferrin saturation
 - Higher total iron binding capacity (Fe free transferrin)
- Potential associated with increased rate of osteoarthritis \bigcirc
 - Anti-inflammatory medications
 - **Neutraceuticals**

Reticulocytosis without anemia (RWA): Study

Fuchs J, Moritz A, Grußendorf E, et al. Reticulocytosis in non-anemic cats and dogs. J Small Anim Pract. 2018. Accepted for publication, January, 2018.

• Low proportion of nonanemic dogs and cats:

- 3.1% cats
- 4.4% dogs
- Mainly in animals with disease
 - Blood loss
 - Cardiac/respiratory disease
 - Gastrointestinal disease
 - Inflammatory disease
 - Cancer

High mortality rate associated with RWA

Conclusions regarding reticulocytosis without anemia (RWA)

- RWA can provide valuable information about possible occult clinical disease \bigcirc
 - Directs the veterinarian to re-evaluate the patient
 - If no underlying disease is discovered, more frequent laboratory testing should be considered

Conclusions regarding reticulocytosis without anemia (RWA)

- RWA can provide valuable information about possible occult clinical disease \bigcirc
 - Directs the veterinarian to re-evaluate the patient
 - If no underlying disease is discovered, more frequent laboratory testing should be considered
- What to do if your analyzer does not provide a reticulocyte count \bigcirc
 - Blood film is essential
 - Manual reticulocyte count may be needed

Questions?

dbdenicola@roadrunner.com

106 © 2017 IDEXX Laboratories, Inc. All rights reserved.

